
libzahl version 1.1

Copyright © 2016 Mattias Andrée ⟨maandree@kth.se⟩
Permission to use, copy, modify, and/or distribute this document for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

mailto:maandree@kth.se

Short contents

1 What is libzahl? 1

2 libzahl’s design 7

3 Get started 13

4 Miscellaneous 19

5 Arithmetic 27

6 Bit operations 39

7 Number theory 47

8 Random numbers 53

9 Not implemented 57

10 Exercises 77

11 Solutions 81

Index 91

iii

iv SHORT CONTENTS

Contents

1 What is libzahl? 1
1.1 The name and the what . 2
1.2 Why does it exist? . 3
1.3 How is it different? . 4
1.4 Limitations . 6

2 libzahl’s design 7
2.1 Memory pool . 8
2.2 Error handling . 9
2.3 Integer structure . 10
2.4 Parameters . 11

3 Get started 13
3.1 Initialisation . 14
3.2 Exceptional conditions . 15
3.3 Create an integer . 17

4 Miscellaneous 19
4.1 Assignment . 20
4.2 String output . 23
4.3 Comparison . 25
4.4 Marshalling . 26

5 Arithmetic 27
5.1 Addition . 28
5.2 Subtraction . 30
5.3 Multiplication . 31
5.4 Division . 32
5.5 Exponentiation . 36
5.6 Sign manipulation . 38

v

vi CONTENTS

6 Bit operations 39
6.1 Boundary . 40
6.2 Shift . 41
6.3 Truncation . 42
6.4 Split . 43
6.5 Bit manipulation . 44
6.6 Bit test . 45
6.7 Connectives . 46

7 Number theory 47
7.1 Odd or even . 48
7.2 Signum . 49
7.3 Greatest common divisor . 50
7.4 Primality test . 51

8 Random numbers 53
8.1 Generation . 54
8.2 Devices . 55
8.3 Distributions . 56

9 Not implemented 57
9.1 Extended greatest common divisor 58
9.2 Least common multiple . 59
9.3 Modular multiplicative inverse 60
9.4 Random prime number generation 61
9.5 Symbols . 62

9.5.1 Legendre symbol . 62
9.5.2 Jacobi symbol . 62
9.5.3 Kronecker symbol . 62
9.5.4 Power residue symbol . 63
9.5.5 Pochhammer k -symbol 63

9.6 Logarithm . 64
9.7 Roots . 65
9.8 Modular roots . 66
9.9 Combinatorial . 67

9.9.1 Factorial . 67
9.9.2 Subfactorial . 68
9.9.3 Alternating factorial . 68
9.9.4 Multifactorial . 68
9.9.5 Quadruple factorial . 68
9.9.6 Superfactorial . 68
9.9.7 Hyperfactorial . 68

CONTENTS vii

9.9.8 Raising factorial . 68
9.9.9 Falling factorial . 68
9.9.10 Primorial . 69
9.9.11 Gamma function . 69
9.9.12 K-function . 69
9.9.13 Binomial coefficient . 69
9.9.14 Catalan number . 69
9.9.15 Fuss–Catalan number . 69

9.10 Fibonacci numbers . 70
9.11 Lucas numbers . 72
9.12 Bit operation . 73

9.12.1 Bit scanning . 73
9.12.2 Population count . 73
9.12.3 Hamming distance . 74

9.13 Miscellaneous . 75
9.13.1 Character retrieval . 75
9.13.2 Fit test . 75
9.13.3 Reference duplication . 75
9.13.4 Variadic initialisation . 75

10 Exercises 77

11 Solutions 81

Index 91

viii CONTENTS

Chapter 1

What is libzahl?

In this chapter, it is discussed what libzahl is, why it is called libzahl, why
it exists, why you should use it, what makes it different, and what is its
limitations.

Contents
1.1 The name and the what 2
1.2 Why does it exist? 3
1.3 How is it different? 4
1.4 Limitations . 6

1

2 CHAPTER 1. WHAT IS LIBZAHL?

1.1 The name and the what

In mathematics, the set of all integers is represented by a bold uppercase
‘Z’ (Z), or sometimes double-stroked (blackboard bold) (Z). This symbol is
derived from the german word for integers: ‘Zahlen’ ["tsa:l@n], whose singular
is ‘Zahl’ [tsa:l]. libzahl [l­Ib"tsa:l] is a C library capable of representing very
large integers, limited by the memory address space and available memory.
Whilst this is almost none of the elements in Z, it is substantially more
than available using the intrinsic integer types in C. libzahl of course also
implements functions for performing arithmetic operations over integers
represented using libzahl. Libraries such as libzahl are called bigint libraries,
big integer libraries, multiple precision integer libraries, arbitrary precision
integer libraries,1 or bignum libraries, or any of the previous with ‘number’
substituted for ‘integer’. Some libraries that refer to themselves as bignum
libraries or any of using the word ‘number’ support other number types than
integers. libzahl only supports integers.

1‘Multiple precision integer’ and ‘arbitrary precision integer’ are misnomers, precision
is only relevant for floating-point numbers.

1.2. WHY DOES IT EXIST? 3

1.2 Why does it exist?

libzahl’s main competitors are GNU MP (gmp),2 LibTomMath (ltm), Toms-
FastMath (tfm) and Hebimath. All of these have problems:

• GNU MP is extremely bloated, can only be complied with GCC, and
requires that you use glibc unless another C standard library was used
when GNU MP was compiled. Additionally, whilst its performance
is generally good, it can still be improved. Furthermore, GNU MP
cannot be used for robust applications.

• LibTomMath is very slow, in fact performance is not its priority, rather
its simplicity is the priority. Despite this, it is not really that simple.

• TomsFastMath is slow, complicated, and is not a true big integer
library and is specifically targeted at cryptography.

libzahl is developed under the suckless.org umbrella. As such, it attempts
to follow the suckless philosophy.3 libzahl is simple, very fast, simple to
use, and can be used in robust applications. Currently however, it does not
support multithreading, but it has better support for multiprocessing and
distributed computing than its competitors.

Lesser ‘‘competitors’’ (less known) to libzahl include Hebimath and
bsdnt.

• Hebimath is far from stable, some fundamental functions are not
implemented and some functions are broken. The author of libzahl
thinks Hebimath is promising, but that it could be better designed.
Like libzahl, Hebimath aims to follow the suckless philosophy.

• bsdnt has not been thoroughly investigated, but it does not look
promising.

2GNU Multiple Precision Arithmetic Library
3http://suckless.org/philosophy

http://suckless.org/philosophy

4 CHAPTER 1. WHAT IS LIBZAHL?

1.3 How is it different?

All big number libraries have in common that both input and output integers
are parameters for the functions. There are however two variants of this:
input parameters followed by output parameters, and output parameters
followed by input parameters. The former variant is the conventional for C
functions. The latter is more in style with primitive operations, pseudo-code,
mathematics, and how it would look if the output was return. In libzahl, the
latter convention is used. That is, we write

zadd(sum, augend, addend);

rather than

zadd(augend, addend, sum);

This can be compared to

sum← augend + addend

versus

augend + addend→ sum.

libzahl, GNU MP, and Hebimath use the output-first convention.4

LibTomMath and TomsFastMath use the input-first convention.5

Unlike other bignum libraries, errors in libzahl are caught using setjmp.
This ensure that it can be used in robust applications, catching errors does
not become a mess, and it minimises the overhead of catching errors. Errors
are only checked when they can occur, not also after each function return.

Additionally, libzahl tries to keep the functions’ names simple and
natural rather than technical or mathematical. The names resemble those
of the standard integer operators. For example, the left-shift, right-shift
and truncation bit-operations in libzahl are called zlsh, zrsh and ztrunc,
respectively. In GNU MP, they are called mpz_mul_2exp, mpz_tdiv_q_2exp
and mpz_tdiv_r_2exp. The need of complicated names are diminished by
resisting to implement all possible variants of each operations. Variants
of a function simply append a short description of the difference in plain
text. For example, a variant of zadd that makes the assumption that both
operands are non-negative (or if not so, calculates the sum of their absolute
values) is called zadd_unsigned. If libzahl would have had floored and

4GNU MP-style.
5BSD MP-style.

1.3. HOW IS IT DIFFERENT? 5

ceiled variants of zdiv (truncated division), they would have been called
zdiv_floor and zdiv_ceiling. zdiv and zmod (modulus) are variants of
zdivmod that throw away one of the outputs. These names can be compared
to GNU MP’s variants of truncated division: mpz_tdiv_q, mpz_tdiv_r and
mpz_tdiv_qr.

6 CHAPTER 1. WHAT IS LIBZAHL?

1.4 Limitations

libzahl is not recommended for cryptographic applications, it is not mature
enough, and its author does not have the necessary expertise. And in par-
ticular, it does not implement constant time operations, and it does not
clear pooled memory. Using libzahl in cryptographic application is insecure;
your application may become susceptible attacks such as timing attacks,
power-monitoring attacks, electromagnetic attacks, acoustic cryptanalysis,
and data remanence attacks. libzahl is known to be susceptible to timing
attacks (due to lack of constant time operations) and data remanence attacks
(due to pooling memory for reuse without clearing the content of the memory
allocations.) Additionally, libzahl is not thread-safe.

libzahl is also only designed for POSIX systems. It will probably run
just fine on any modern system. But it makes some assumption that POSIX
stipulates or are unpractical not to implement for machines that should
support POSIX (or even support modern software):

• Bytes are octets.

• There is an integer type that is 64-bits wide. (The compiler needs to
support it, but it is not strictly necessary for it to be an CPU-intrinsic,
but that would be favourable for performance.)

• Two’s complement is used. (The compiler needs to support it, but it
is not strictly necessary for it to be an CPU-intrinsic, but that would
be favourable for performance.)

Because of the prevalence of theses properties in contemporary machines,
and the utilisation of these properties in software, especially software for
POSIX and popular platforms with similar properties, any new general-
purpose machine most have these properties lest, it but useless with today’s
software. Therefore, libzahl can make the assumption that the machine has
these properties. If the machine does not have these properties, the compiler
must compensate for these machines deficiencies, making it generally slower.

These limitations may be removed later. And there is some code that
does not make these assumptions but acknowledge that it may be a case.
On the other hand, these limitations could be fixed, and agnostic code could
be rewritten to assume that these restrictions are met.

Chapter 2

libzahl’s design

In this chapter, the design of libzahl is discussed.

Contents
2.1 Memory pool . 8
2.2 Error handling . 9
2.3 Integer structure . 10
2.4 Parameters . 11

7

8 CHAPTER 2. LIBZAHL’S DESIGN

2.1 Memory pool

Allocating memory dynamically is an expensive operation. To improve per-
formance, libzahl never deallocates memory before the library is uninitialised,
instead it pools memory, that is no longer needed, for reuse.

Because of the memory pooling, this is a pattern to the allocation sizes.
In an allocation, a power of two elements, plus a few elements that are
discussed in Section 2.3 [Integer structure], page 10, are allocated. That is,
the number multiplied by the size of an element. Powers of two (growth
factor 2) is not the most memory efficient way to do this, but it is the
simplest and performance efficient. This power of two (sans the few extra
elements) is used to calculate — getting the index of the only set bit —
the index of the bucket in which the allocation is stored when pooled. The
buckets are dynamic arrays with the growth factor 1.5. The growth factor 1.5
is often used for dynamic arrays, it is a good compromise between memory
usage and performance.

libzahl also avoids allocating memory by having a set of temporary
variables predefined.

2.2. ERROR HANDLING 9

2.2 Error handling

In C, it is traditional to return a sentiel value in case an error has occurred,
and set the value of a global variable to describe the error that has occurred.
The programmer can choose whether to check for errors, ignore errors where
it does not matter, or simple ignore errors altogether and let the program
eventually crash. This is a simple technique that gives the programmer a
better understanding of what can happen. A great advantage C has over
most programming languages.

Another technique is to use long jumps on error. This technique is not
too common, but is has one significant advantage. Error-checks need only
be preformed where the error can first be detected. There is no need to
check the return value at every function return. This leads to cleaner code, if
there are many functions that can raise exceptional conditions, and greater
performance under some conditions. This is why this technique is sometimes
used in high-performance libraries. libzahl uses this technique.

Rather than writing

if (zadd(a, b, c))
goto out;

or a bit cleaner, if there are a lot of calls,

#define TRY(...) do if (__VA_ARGS__) goto out; while (0)
/* . . . */
TRY(zadd(a, b, c));

we write

jmp_buf env;
if (setjmp(env))

goto out;
zsetup(env);
/* . . . */
zadd(a, b, c);

You only need to call setjmp and zsetup once, but can update the
return point by calling them once more.

If you don’t need to check for errors, you can disable error detection at
compile-time. By defining the ZAHL_UNSAFE C preprocessor definition when
compiling libzahl, and when compiling your software that uses libzahl.

10 CHAPTER 2. LIBZAHL’S DESIGN

2.3 Integer structure

The data type used to represent a big integer with libzahl is z_t,1 defined as

typedef struct zahl z_t[1];

where struct zahl is defined as

struct zahl {
int sign; /* not short for ‘signum’ */
size_t used;
size_t alloced; /* short for ‘allocated’ */
zahl_char_t *chars; /* short for ‘characters’ */

};

where zahl_char_t is defined as

typedef uint64_t zahl_char_t;

As a user, try not to think about anything else than

typedef /* ignore what is here */ z_t[1];

details can change in future versions of libzahl.
z_t is defined as a single-element array. This is often called a reference,

or a call-by-reference. There are some flexibility issues with this, why struct
zahl has beed added, but for most uses with big integers, it makes things
simpler. Particularly, you need not work prepend & to variable when making
function calls, but the existence of struct zahl allows you do so if you so
choose.

The .sign member, is either −1, 0, or 1, when the integer is negative,
zero, or positive, respectively. Whenever .sign is 0, the value of .used and
.chars are undefined.

.used holds to the number of elements used in .chars, and .alloced
holds the allocation side of .chars measured in elements minus a few extra
elements that are always added to the allocation. .chars is a little-endian
array of 64-bit digits, these 64-bit digits are called ‘characters’ in libzahl.
.chars holds the absolute value of the represented value.

Unless .sign is 0, .chars always contains four extra elements, refered
to as fluff. These are merely allocated so functions can assume that they
can always manipulate groups of four characters, and need not care about
cases where the number of characters is not a multiple of four. There are of
course a few cases when the precise number of characters is important.

1This name actually violates the naming convention; it should be Z, or Zahl to avoid
single-letter names. But this violation is common-place.

2.4. PARAMETERS 11

2.4 Parameters

The general order of parameters in libzahl functions are: output integers,
input integers, input data, output data, parametric values. For example, in
addition, the out parameter is the first parameter. But for marshalling and
unmarshalling the buffer is last. For random number generation the order is:
output, device, distribution, distribution parameters. Whilst the distribution
parameters are big integers, they are not considered input integers. The
order of the input parameters are that of the order you would write them
using mathematical notation, this also holds true if you include the output
parameter (as long as there is exactly one output), for example

a← bc mod d

is written

zmodpow(a, b, c, d);

or

zmodpowu(a, b, c, d);

Like any self respecting bignum library, libzahl supports using the same
big integer reference as for output as input, as long as all the output
parameters are mutually unique. For example

a += b;

or

a = a + b;

is written, using libzahl, as

zadd(a, a, b);

For commutative functions, like zadd, the implementation is optimised
to assume that this order is more likely to be used than the alternative. That
is, we should, for example, write

zadd(a, a, b);

rather than

zadd(a, b, a);

This assumption is not made for non-commutative functions.
When writting your own functions, be aware, input parameters are

generally not declared const in libzahl. Currently, some functions actually
make modifications (that do not affect the value) to input parameters.

12 CHAPTER 2. LIBZAHL’S DESIGN

Chapter 3

Get started

In this chapter, you will learn the basics of libzahl. You should read the
sections in order.

Contents
3.1 Initialisation . 14
3.2 Exceptional conditions 15
3.3 Create an integer . 17

13

14 CHAPTER 3. GET STARTED

3.1 Initialisation

Before using libzahl, it must be initialised. When initialising, you must select
a location whither libzahl long jumps on error.

#include <zahl.h>

int
main(void)
{

jmp_buf jmpenv;
if (setjmp(jmpenv))

return 1; /* Exit on error */
zsetup(jmpenv);
/* . . . */
return 0;

}

zsetup also initialises temporary variables used by libzahl’s functions,
and constants used by libzahl’s functions. Furthermore, it initialises the
memory pool and a stack which libzahl uses to keep track of temporary
allocations that need to be pooled for use if a function fails.

It is recommended to also uninitialise libzahl when you are done using
it, for example before the program exits.

int
main(void)
{

jmp_buf jmpenv;
if (setjmp(jmpenv))

return 1; /* Exit on error */
zsetup(jmpenv);
/* . . . */
zunsetup();
return 0;

}

zunsetup frees all memory that has been reclaimed to the memory pool,
and all memory allocated by zsetup. Note that this does not free integers
that are still in use. It is possible to simply call zunsetup directly followed
by zsetup to free all pooled memory.

3.2. EXCEPTIONAL CONDITIONS 15

3.2 Exceptional conditions

Exceptional conditions, casually called ‘errors’, are treated in libzahl using
long jumps.

int
main(int argc, char *argv[])
{

jmp_buf jmpenv;
if (setjmp(jmpenv))

return 1; /* Exit on error */
zsetup(jmpenv);
return 0;

}

Just exiting on error is not a particularly good idea. Instead, you may
want to print an error message. This is done with zperror.

if (setjmp(jmpenv)) {
zperror(*argv);
return 1;

}

zperror works just like perror. It outputs an error description to standard
error. A line break is printed at the end of the message. If the argument
passed to zperror is neither NULL nor an empty string, it is printed in front
of the description, with a colon and a space separating the passed string and
the description. For example, zperror("my-app") may output

my-app: Cannot allocate memory

libzahl also provides zerror. Calling this function will provide you with
an error code and a textual description.

if (setjmp(jmpenv)) {
const char *description;
zerror(&description);
fprintf(stderr, "%s: %s\n", *argv, description);
return 1;

}

This code behaves like the example above that calls zperror. If you are
interested in the error code, you instead look at the return value.

16 CHAPTER 3. GET STARTED

if (setjmp(jmpenv)) {
enum zerror e = zerror(NULL);
switch (e) {
case ZERROR_ERRNO_SET:

perror("");
return 1;

case ZERROR_0_POW_0:
fprintf(stderr, "Indeterminate form: 0^0\n");
return 1;

case ZERROR_0_DIV_0:
fprintf(stderr, "Indeterminate form: 0/0\n");
return 1;

case ZERROR_DIV_0:
fprintf(stderr, "Do not divide by zero, dummy\n");
return 1;

case ZERROR_NEGATIVE:
fprintf(stderr, "Undefined (negative input)\n");
return 1;

case ZERROR_INVALID_RADIX:
fprintf(stderr, "Radix must be at least 2\n");
return 1;

default:
zperror("");
return 1;

}
}

To change the point whither libzahl’s functions jump, call setjmp and
zsetup again.

jmp_buf jmpenv;
if (setjmp(jmpenv)) {

/* . . . */
}
zsetup(jmpenv);
/* . . . */
if (setjmp(jmpenv)) {

/* . . . */
}
zsetup(jmpenv);

3.3. CREATE AN INTEGER 17

3.3 Create an integer

To do any real work with libzahl, we need integers. The data type for a big
integer in libzahl is z_t (see Section 2.3 [Integer structure], page 10). Before
a z_t can be assigned a value, it must be initialised.

z_t a;
/* . . . */
zsetup(jmpenv);
zinit(a);
/* . . . */
zunsetup();

zinit(a) is actually a less cumbersome and optimised alternative to calling
memset(a, 0, sizeof(z_t)). It sets the values of two members: .alloced
and .chars, to 0 and NULL. This is necessary, otherwise the memory allocated
could be fooled to deallocate a false pointer, causing the program to abort.

Once the reference has been initialised, you may assign it a value. The
simplest way to do this is by calling

void zseti(z_t a, int64_t value);

For example zseti(a, 1), assignes the value 1 to the z_t a.
When you are done using a big integer reference, you should call zfree

to let libzahl know that it should pool the allocation of the .chars member.

z_t a;
zinit(a);
/* . . . */
zfree(a); /* before zunsetup */

Instead of calling zfree(a), it is possible — but strongly discouraged —
to call free(a->chars). Note however, by doing so, the allocation is not
pooled for reuse.

If you plan to reuse the variable later, you need to reinitialise it by
calling zinit again.

Alternatives to zseti include (see Section 4.1 [Assignment], page 20):

void zsetu(z_t a, uint64_t value);
void zsets(z_t a, const char *value);
void zset(z_t a, z_t value); /* copy value into a */

18 CHAPTER 3. GET STARTED

Chapter 4

Miscellaneous

In this chapter, we will learn some miscellaneous functions. It might seem
counterintuitive to start with miscellanea, but it is probably a good idea
to read this before arithmetics and more advanced topics. You may read
Section 4.4 [Marshalling], page 26 later. Before reading this chapter you
should have read Chapter 3 [Get started], page 13.

Contents
4.1 Assignment . 20
4.2 String output . 23
4.3 Comparison . 25
4.4 Marshalling . 26

19

20 CHAPTER 4. MISCELLANEOUS

4.1 Assignment

To be able to do anything useful, we must assign values to integers. There
are three functions for this: zseti, zsetu, and zsets. The last letter in the
names of these function describe the data type of the input, ‘i’, ‘u’, and
‘s’ stand for ‘integer’, ‘unsigned integer’, and ‘string‘, respectively. These
resemble the rules for the format strings in the family of printf-functions.
‘Integer’ of course refer to ‘signed integer’; for integer types in C, part from
char, the keyword signed is implicit.

Consider zseti,

z_t two;
zinit(two);
zseti(two, 2);

assignes two the value 2. The data type of the second parameter of zseti
is int64_t. It will accept any integer value in the range [−263, 263 − 1] =
[−9223372036854775808, 9223372036854775807], independently of the ma-
chine.1 If this range so not wide enough, it may be possible to use zsetu. Its
second parameter of the type uint64_t, and thus its range is [0, 264 − 1] =
[0, 18446744073709551615]. If a need negative value is desired, zsetu can
be combined with zneg (see Section 5.6 [Sign manipulation], page 38).

For enormous constants or textual input, zsets can be used. zsets will
accept any numerical value encoded in decimal ASCII, that only contain
digits, not decimal points, whitespace, apostrophes, et cetera. However, an
optional plus sign or, for negative numbers, an ASCII minus sign may be
used as the very first character. Note that a proper UCS minus sign is not
supported.

Using what we have learned so far, and zstr which we will learn about
in Section 4.2 [String output], page 23, we can construct a simple program
that calculates the sum of a set of numbers.

#include <stdio.h>
#include <stdlib.h>
#include <zahl.h>

int
main(int argc, char *argv[]) {

z_t sum, temp;
jmp_buf failenv;
char *sbuf, *argv0 = *argv;

1int64_t is defined to be a signed 64-bit integer using two’s complement representation.

4.1. ASSIGNMENT 21

if (setjmp(failenv)) {
zperror(argv0);
return 1;

}
zsetup(failenv);
zinit(sum);
zinit(term);
zsetu(sum, 0);
for (argv++; *argv; argv++) {

zsets(term, *argv);
zadd(sum, sum, term);

}
printf("%s\n", (sbuf = zstr(sum, NULL, 0)));
free(sbuf);
zfree(sum);
zfree(term);
zunsetup();
return 0;

}

Another form of assignment available in libzahl is copy-assignment. This
done using zset. As easily observable, zset is named like zseti, zsetu, and
zsetu, but without the input-type suffix. The lack of a input-type suffix
means that the input type is z_t. zset copies value of second parameter
into the reference in the first. For example, if v, of the type z_t, has value
10, then a will too after the instruction

zset(a, v);

zset does not necessarily make an exact copy of the input. If, in the exam-
ple above, the a->alloced is greater than or equal to v->used, a->alloced
and a->chars are preserved, of course, the content of a->chars is overridden.
If however, a->alloced is less then v->used, a->alloced is assigned a min-
imal value at least as great as v->used that is a power of 2, and a->chars
is updated accordingly as described in Section 2.3 [Integer structure], page
10. This of course does not apply if v has the value 0; in such cases a->sign
is simply set to 0.

zset, zseti, zsetu, and zsets require that the output-parameter has
been initialised with zinit or an equally acceptable method as described in
Section 3.3 [Create an integer], page 17.

zset is often unnecessary, of course there are cases where it is needed.
In some case zswap is enough, and advantageous. zswap is defined as

22 CHAPTER 4. MISCELLANEOUS

static inline void
zswap(z_t a, z_t b)
{

z_t t;
*t = *a;
*a = *b;
*b = *t;

}

however its implementation is optimised to be around three times as fast. It
just swaps the members of the parameters, and thereby the values. There is
no rewriting of .chars involved; thus it runs in constant time. It also does
not require that any argument has been initialised. After the call, a will be
initialised if and only if b was initialised, and vice versa.

4.2. STRING OUTPUT 23

4.2 String output

Few useful things can be done without creating textual output of calculations.
To convert a z_t to ASCII string in decimal, we use the function zstr,
declared as

char *zstr(z_t a, char *buf, size_t n);

zstr will store the string it creates into buf and return buf. However, if
buf is NULL, a new memory segment is allocated and returned. n should be
at least the length of the resulting string sans NUL termiantion, but not
larger than the allocation size of buf minus 1 byte for NUL termiantion. If
buf is NULL, n may be 0. However if buf is not NULL, it is unsafe to let n be
0, unless buf has been allocated by zstr for a value of a at least as larger
as the value of a in the new call to zstr. Combining non-NULL buf with 0 n
is unsafe because zstr will use a very fast formula for calculating a value
that is at least as large as the resulting output length, rather than the exact
length.

The length of the string output by zstr can be predicted by zstr_length,
decleared as

size_t zstr_length(z_t a, unsigned long long int radix);

It will calculated the length of a represented in radix radix, sans NUL termi-
nation. If radix is 10, the length for a decimal representation is calculated.

Sometimes it is possible to never allocate a buf for zstr. For example,
in an implementation of factor, you can reuse the string of the value to
factorise, since all of its factors are guaranteed to be no longer than the
factored value.

void
factor(char *value)
{

size_t n = strlen(value);
z_t product, factor;
zsets(product, value);
printf("%s:", value);
while (next_factor(product, factor))

printf(" %s", zstr(factor, value, n));
printf("\n");

}

Other times it is possible to allocate just once, for example of creating a
sorted output. In such cases, the allocation can be done almost transparently.

24 CHAPTER 4. MISCELLANEOUS

void
output_presorted_decending(z_t *list, size_t n)
{

char *buf = NULL;
while (n--)

printf("%s\n", (buf = zstr(*list++, buf, 0)));
}

Note, this example assumes that all values are non-negative.

4.3. COMPARISON 25

4.3 Comparison

libzahl defines four functions for comparing integers: zcmp, zcmpi, zcmpu,
and zcmpmag. These follow the same naming convention as zset, zseti, and
zsetu, as described in Section 4.1 [Assignment], page 20. zcmpmag compares
the absolute value, the magnitude, rather than the proper value. These
functions are declared as

int zcmp(z_t a, z_t b);
int zcmpi(z_t a, int64_t b);
int zcmpu(z_t a, uint64_t b);
int zcmpmag(z_t a, z_t b);

They behave similar to memcmp and strcmp.2 The return value is defined

sgn(a − b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if a < b
0 if a = b
+1 if a > b

for zcmp, zcmpi, and zcmpu. The return for zcmpmag value is defined

sgn(∣a∣ − ∣b∣) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if ∣a∣ < ∣b∣
0 if ∣a∣ = ∣b∣
+1 if ∣a∣ > ∣b∣

It is discouraged, stylistically, to compare against −1 and +1, rather, you
should always compare against 0. Think of it as returning a− b, or ∣a∣ − ∣b∣ in
the case of zcmpmag.

2And wmemcmp and wcscmp if you are into that mess.

26 CHAPTER 4. MISCELLANEOUS

4.4 Marshalling

libzahl is designed to provide efficient communication for multi-processes
applications, including running on multiple nodes on a cluster computer.
However, these facilities require that it is known that all processes run the
same version of libzahl, and run on compatible microarchitectures, that is,
the processors must have endianness, and the intrinsic integer types in C
must have the same widths on all processors. When this is not the case,
string conversion can be used (see Section 4.1 [Assignment], page 20 and
Section 4.2 [String output], page 23), but when it is the case zsave and
zload can be used. zsave and zload are declared as

size_t zsave(z_t a, char *buf);
size_t zload(z_t a, const char *buf);

zsave stores a version- and microarchitecture-dependent binary represen-
tation of a in buf, and returns the number of bytes written to buf. If buf
is NULL, the numbers bytes that would have be written is returned. zload
unmarshals an integers from buf, created with zsave, into a, and returns
the number of read bytes. zload returns the value returned by zsave.

Chapter 5

Arithmetic

In this chapter, we will learn how to perform basic arithmetic with libzahl:
addition, subtraction, multiplication, division, modulus, exponentiation, and
sign manipulation. Section 5.4 [Division], page 32 is of special importance.

Contents
5.1 Addition . 28
5.2 Subtraction . 30
5.3 Multiplication . 31
5.4 Division . 32
5.5 Exponentiation . 36
5.6 Sign manipulation . 38

27

28 CHAPTER 5. ARITHMETIC

5.1 Addition

To calculate the sum of two terms, we perform addition using zadd.

r ← a + b

is written as

zadd(r, a, b);

libzahl also provides zadd_unsigned which has slightly lower overhead.
The calculates the sum of the absolute values of two integers.

r ← ∣a∣ + ∣b∣

is written as

zadd_unsigned(r, a, b);

zadd_unsigned has lower overhead than zadd because it does not need to
inspect or change the sign of the input, the low-level function that performs
the addition inherently calculates the sum of the absolute values of the
input.

In libzahl, addition is implemented using a technique called ripple-carry.
It is derived from that observation that

f ∶ Zn,Zn → Zn

f ∶ a, b↦ a + b + 1

only wraps at most once, that is, the carry cannot exceed 1. CPU:s provide
an instruction specifically for performing addition with ripple-carry over
multiple words, adds twos numbers plus the carry from the last addition.
libzahl uses assembly to implement this efficiently. If, however, an assembly
implementation is not available for the on which machine it is running,
libzahl implements ripple-carry less efficiently using compiler extensions that
check for overflow. In the event that neither an assembly implementation
is available nor the compiler is known to support this extension, it is im-
plemented using inefficient pure C code. This last resort manually predicts
whether an addition will overflow; this could be made more efficient, by
never using the highest bit in each character, except to detect overflow. This
optimisation is however not implemented because it is not deemed important
enough and would be detrimental to libzahl’s simplicity.

zadd and zadd_unsigned support in-place operation:

5.1. ADDITION 29

zadd(a, a, b);
zadd(b, a, b); /* should be avoided */
zadd_unsigned(a, a, b);
zadd_unsigned(b, a, b); /* should be avoided */

Use this whenever possible, it will improve your performance, as it will
involve less CPU instructions for each character addition and it may be
possible to eliminate some character additions.

30 CHAPTER 5. ARITHMETIC

5.2 Subtraction

TODO

5.3. MULTIPLICATION 31

5.3 Multiplication

TODO

32 CHAPTER 5. ARITHMETIC

5.4 Division

To calculate the quotient or modulus of two integers, use either of

void zdiv(z_t quotient, z_t dividend, z_t divisor);
void zmod(z_t remainder, z_t dividend, z_t divisor);
void zdivmod(z_t quotient, z_t remainder,

z_t dividend, z_t divisor);

These function do not allow NULL for the output parameters: quotient and
remainder. The quotient and remainder are calculated simultaneously and
indivisibly, hence zdivmod is provided to calculated both; if you are only
interested in the quotient or only interested in the remainder, use zdiv or
zmod, respectively.

These functions calculate a truncated quotient. That is, the result is
rounded towards zero. This means for example that if the quotient is in
(−1, 1), quotient gets 0. That is, this would not be the case for one of the
sides of zero. For example, if the quotient would have been floored, negative
quotients would have been rounded away from zero. libzahl only provides
truncated division.

The remainder is defined such that n = qd + r after calling zdivmod(q,
r, n, d). There is no difference in the remainer between zdivmod and zmod.
The sign of d has no affect on r, r will always, unless it is zero, have the
same sign as n.

There are of course other ways to define integer division (that is, Z being
the codomain) than as truncated division. For example integer divison in
Python is floored — yes, you did just read ‘integer divison in Python is
floored,’ and you are correct, that is not the case in for example C. Users
that want another definition for division than truncated division are required
to implement that themselves. We will however lend you a hand.

#define isneg(x) (zsignum(x) < 0)
static z_t one;
__attribute__((constructor)) static
void init(void) { zinit(one), zseti(one, 1); }

static int
cmpmag_2a_b(z_t a, z_b b)
{

int r;
zadd(a, a, a), r = zcmpmag(a, b), zrsh(a, a, 1);
return r;

}

5.4. DIVISION 33

void /* All arguments must be unique. */
divmod_floor(z_t q, z_t r, z_t n, z_t d)
{

zdivmod(q, r, n, d);
if (!zzero(r) && isneg(n) != isneg(d))

zsub(q, q, one), zadd(r, r, d);
}

void /* All arguments must be unique. */
divmod_ceiling(z_t q, z_t r, z_t n, z_t d)
{

zdivmod(q, r, n, d);
if (!zzero(r) && isneg(n) == isneg(d))

zadd(q, q, one), zsub(r, r, d);
}

/* This is how we normally round numbers. */
void /* All arguments must be unique. */
divmod_half_from_zero(z_t q, z_t r, z_t n, z_t d)
{

zdivmod(q, r, n, d);
if (!zzero(r) && cmpmag_2a_b(r, d) >= 0) {

if (isneg(n) == isneg(d))
zadd(q, q, one), zsub(r, r, d);

else
zsub(q, q, one), zadd(r, r, d);

}
}

Now to the weird ones that will more often than not award you a face-slap.

void /* All arguments must be unique. */
divmod_half_to_zero(z_t q, z_t r, z_t n, z_t d)
{

zdivmod(q, r, n, d);
if (!zzero(r) && cmpmag_2a_b(r, d) > 0) {

if (isneg(n) == isneg(d))
zadd(q, q, one), zsub(r, r, d);

else
zsub(q, q, one), zadd(r, r, d);

}
}

34 CHAPTER 5. ARITHMETIC

void /* All arguments must be unique. */
divmod_half_up(z_t q, z_t r, z_t n, z_t d)
{

int cmp;
zdivmod(q, r, n, d);
if (!zzero(r) && (cmp = cmpmag_2a_b(r, d)) >= 0) {

if (isneg(n) == isneg(d))
zadd(q, q, one), zsub(r, r, d);

else if (cmp)
zsub(q, q, one), zadd(r, r, d);

}
}

void /* All arguments must be unique. */
divmod_half_down(z_t q, z_t r, z_t n, z_t d)
{

int cmp;
zdivmod(q, r, n, d);
if (!zzero(r) && (cmp = cmpmag_2a_b(r, d)) >= 0) {

if (isneg(n) != isneg(d))
zsub(q, q, one), zadd(r, r, d);

else if (cmp)
zadd(q, q, one), zsub(r, r, d);

}
}

void /* All arguments must be unique. */
divmod_half_to_even(z_t q, z_t r, z_t n, z_t d)
{

int cmp;
zdivmod(q, r, n, d);
if (!zzero(r) && (cmp = cmpmag_2a_b(r, d)) >= 0) {

if (cmp || zodd(q)) {
if (isneg(n) != isneg(d))

zsub(q, q, one), zadd(r, r, d);
else

zadd(q, q, one), zsub(r, r, d);
}

}
}

5.4. DIVISION 35

void /* All arguments must be unique. */
divmod_half_to_odd(z_t q, z_t r, z_t n, z_t d)
{

int cmp;
zdivmod(q, r, n, d);
if (!zzero(r) && (cmp = cmpmag_2a_b(r, d)) >= 0) {

if (cmp || zeven(q)) {
if (isneg(n) != isneg(d))

zsub(q, q, one), zadd(r, r, d);
else

zadd(q, q, one), zsub(r, r, d);
}

}
}

Currently, libzahl uses an almost trivial division algorithm. It operates
on positive numbers. It begins by left-shifting the divisor as much as possible
with letting it exceed the dividend. Then, it subtracts the shifted divisor from
the dividend and add 1, left-shifted as much as the divisor, to the quotient.
The quotient begins at 0. It then right-shifts the shifted divisor as little as
possible until it no longer exceeds the diminished dividend and marks the
shift in the quotient. This process is repeated until the unshifted divisor is
greater than the diminished dividend. The final diminished dividend is the
remainder.

36 CHAPTER 5. ARITHMETIC

5.5 Exponentiation

Exponentiation refers to raising a number to a power. libzahl provides
two functions for regular exponentiation, and two functions for modular
exponentiation. libzahl also provides a function for raising a number to the
second power, see Section 5.3 [Multiplication], page 31 for more details on
this. The functions for regular exponentiation are

void zpow(z_t power, z_t base, z_t exponent);
void zpowu(z_t, z_t, unsigned long long int);

They are identical, except zpowu expects an intrinsic type as the exponent.
Both functions calculate

power ← baseexponent

The functions for modular exponentiation are

void zmodpow(z_t, z_t, z_t, z_t modulator);
void zmodpowu(z_t, z_t, unsigned long long int, z_t);

They are identical, except zmodpowu expects and intrinsic type as the expo-
nent. Both functions calculate

power ← baseexponent mod modulator

The sign of modulator does not affect the result, power will be negative
if and only if base is negative and exponent is odd, that is, under the same
circumstances as for zpow and zpowu.

These four functions are implemented using exponentiation by squaring.
zmodpow and zmodpowu are optimised, they modulate results for multiplica-
tion and squaring at every multiplication and squaring, rather than modu-
lating the result at the end. Exponentiation by modulation is a very simple
algorithm which can be expressed as a simple formula

ab = ∏
k∈Z+ ∶ ⌊ b

2k
mod 2⌋=1

a2
k

This is a natural extension to the observations1

∀b ∈ Z+∃B ⊂ Z+ ∶ b = ∑
i∈B

2i and a∑x =∏ax.

1The first of course being that any non-negative number can be expressed with the
binary positional system. The latter should be fairly self-explanatory.

5.5. EXPONENTIATION 37

The algorithm can be expressed in psuedocode as

r, f ← 1, a
while b ≠ 0 do
r ← r ⋅ f unless 2∣b
f ← f2 {f ← f ⋅ f}
b← ⌊b/2⌋

end while
return r

Modular exponentiation (ab mod m) by squaring can be expressed as

r, f ← 1, a
while b ≠ 0 do
r ← r ⋅ f mod m unless 2∣b
f ← f2 mod m
b← ⌊b/2⌋

end while
return r

zmodpow does not calculate the modular inverse if the exponent is nega-
tive, rather, you should expect the result to be 1 and 0 depending of whether
the base is 1 or not 1.

38 CHAPTER 5. ARITHMETIC

5.6 Sign manipulation

libzahl provides two functions for manipulating the sign of integers:

void zabs(z_t r, z_t a);
void zneg(z_t r, z_t a);

zabs stores the absolute value of a in r, that is, it creates a copy of a to
r, unless a and r are the same reference, and then removes its sign; if the
value is negative, it becomes positive.

r ← ∣a∣ = { −a if a ≤ 0
+a if a ≥ 0

zneg stores the negated of a in r, that is, it creates a copy of a to r,
unless a and r are the same reference, and then flips sign; if the value is
negative, it becomes positive, if the value is positive, it becomes negative.

r ← −a

Note that there is no function for

r ← −∣a∣ = { a if a ≤ 0
−a if a ≥ 0

calling zabs followed by zneg should be sufficient for most users:

#define my_negabs(r, a) (zabs(r, a), zneg(r, r))

Chapter 6

Bit operations

libzahl provides a number of functions that operate on bits. These can
sometimes be used instead of arithmetic functions for increased performance.
You should read the sections in order.

Contents
6.1 Boundary . 40
6.2 Shift . 41
6.3 Truncation . 42
6.4 Split . 43
6.5 Bit manipulation . 44
6.6 Bit test . 45
6.7 Connectives . 46

39

40 CHAPTER 6. BIT OPERATIONS

6.1 Boundary

To retrieve the index of the lowest set bit, use

size_t zlsb(z_t a);

It will return a zero-based index, that is, if the least significant bit is indeed
set, it will return 0.

If a is a power of 2, it will return the power of which 2 is raised, effectively
calculating the binary logarithm of a. Note, this is only if a is a power of two.
More generally, it returns the number of trailing binary zeroes, if equivalently
the number of times a can evenly be divided by 2. However, in the special
case where a = 0, SIZE_MAX is returned.

A similar function is

size_t zbit(z_t a);

It returns the minimal number of bits require to represent an integer. That
is, ⌈log2 a⌉ − 1, or equivalently, the number of times a can be divided by 2
before it gets the value 0. However, in the special case where a = 0, 1 is
returned. 0 is never returned. If you want the value 0 to be returned if a = 0,
write

zzero(a) ? 0 : zbits(a)

The definition ‘‘it returns the minimal number of bits required to repre-
sent an integer,’’ holds true if a = 0, the other divisions do not hold true if
a = 0.

6.2. SHIFT 41

6.2 Shift

There are two functions for shifting bits in integers:

void zlsh(z_t r, z_t a, size_t b);
void zrsh(z_t r, z_t a, size_t b);

zlsh performs a left-shift, and zrsh performs a right-shift. That is, zlsh
adds b trailing binary zeroes, and zrsh removes the lowest b binary digits.
So if

a = 100001012 then
r = 10000101002 after calling zlsh(r, a, 2), and
r = 1000012 after calling zrsh(r, a, 2).

zlsh(r, a, b) is equivalent to r ← a ⋅ 2b, and zrsh(r, a, b) is equiv-
alent to r ← a ÷ 2b, with truncated division, zlsh and zrsh are significantly
faster than zpowu and should be used whenever possible. zpowu does not
check if it is possible for it to use zlsh instead, even if it would, zlsh and
zrsh would still be preferable in most cases because it removes the need for
zmul and zdiv, respectively.

zlsh and zrsh are implemented in two steps: (1) shift whole characters,
that is, groups of aligned 64 bits, and (2) shift on a bit-level between
characters.

If you are implementing a calculator, you may want to create a wrapper
for zpow that uses zlsh whenever possible. One such wrapper could be

void
pow(z_t r, z_t a, z_t b)
{

size_t s1, s2;
if ((s1 = zlsb(a)) + 1 == zbits(a) &&

zbits(b) <= 8 * sizeof(SIZE_MAX)) {
s2 = zzero(b) ? 0 : b->chars[0];
if (s1 <= SIZE_MAX / s2) {

zsetu(r, 1);
zlsh(r, r, s1 * s2);
return;

}
}
zpow(r, a, b);

}

42 CHAPTER 6. BIT OPERATIONS

6.3 Truncation

In Section 6.2 [Shift], page 41 we have seen how bit-shift operations can be
used to multiply or divide by a power of two. There is also a bit-truncation
operation: ztrunc, which is used to keep only the lowest bits, or equivalently,
calculate the remainder of a division by a power of two.

void ztrunc(z_t r, z_t a, size_t b);

is consistent with zmod; like zlsh and zrsh, a’s sign is preserved into r
assuming the result is non-zero.

ztrunc(r, a, b) stores only the lowest b bits in a into r, or equivalently,
calculates r ← a mod 2b. For example, if

a = 1000110002 then
r = 10002 after calling ztrunc(r, a, 4).

6.4. SPLIT 43

6.4 Split

In Section 6.2 [Shift], page 41 and Section 6.3 [Truncation], page 42 we have
seen how bit operations can be used to calculate division by a power of two
and modulus a power of two efficiently using bit-shift and bit-truncation
operations. libzahl also has a bit-split operation that can be used to efficiently
calculate both division and modulus a power of two efficiently in the same
operation, or equivalently, storing low bits in one integer and high bits in
another integer. This function is

void zsplit(z_t high, z_t low, z_t a, size_t b);

Unlike zdivmod, it is not more efficient than calling zrsh and ztrunc, but it
is more convenient. zsplit requires that high and low are from each other
distinct references.

Calling zsplit(high, low, a, b) is equivalent to

ztrunc(low, a, delim);
zrsh(high, a, delim);

assuming a and low are not the same reference (reverse the order of the
functions if they are the same reference.)

zsplit copies the lowest b bits of a to low, and the rest of the bits to
high, with the lowest b removesd. For example, if a = 10101011112, then
high = 1010102 and low = 11112 after calling zsplit(high, low, a, 4).

zsplit is especially useful in divide-and-conquer algorithms.

44 CHAPTER 6. BIT OPERATIONS

6.5 Bit manipulation

The function

void zbset(z_t r, z_t a, size_t bit, int mode);

is used to manipulate single bits in a. It will copy a into r and then, in r,
either set, clear, or flip, the bit with the index bit — the least significant
bit has the index 0. The action depend on the value of mode:

• mode > 0 (+1): set

• mode = 0 (0): clear

• mode < 0 (−1): flip

6.6. BIT TEST 45

6.6 Bit test

libzahl provides a function for testing whether a bit in a big integer is set:

int zbtest(z_t a, size_t bit);

it will return 1 if the bit with the index bit is set in a, counting from the
least significant bit, starting at zero. 0 is returned otherwise. The sign of a
is ignored.

We can think of this like so: consider

∣a∣ =
∞

∑
i=0

ki2
i, ki ∈ {0,1},

zbtest(a, b) returns kb. Equivalently, we can think that zbtest(a, b)
return whether b ∈ B where B is defined by

∣a∣ = ∑
b∈B

2b, B ⊂ Z+,

or as right-shifting a by b bits and returning whether the least significant
bit is set.

zbtest always returns 1 or 0, but for good code quality, you should avoid
testing against 1, rather you should test whether the value is a truth-value
or a falsehood-value. However, there is nothing wrong with depending on the
value being restricted to being either 1 or 0 if you want to sum up returned
values or otherwise use them in new values.

46 CHAPTER 6. BIT OPERATIONS

6.7 Connectives

libzahl implements the four basic logical connectives: and, or, exclusive or,
and not. The functions for these are named zand, zor, zxor, and znot,
respectively.

The connectives apply to each bit in the integers, as well as the sign. The
sign is treated as a bit that is set if the integer is negative, and as cleared
otherwise. For example (integers are in binary):

zand(r, a, b) zor(r, a, b)
a = +1010 (input) a = +1010 (input)
b = -1100 (input) b = -1100 (input)
r = +1000 (output) r = -1110 (output)

zxor(r, a, b) znot(r, a)
a = +1010 (input) a = +1010 (input)
b = -1100 (input) r = -0101 (output)
r = -0110 (output)

Remember, in libzahl, integers are represented with sign and magnitude,
not two’s complement, even when using these connectives. Therefore, more
work than just changing the name of the called function may be required
when moving between big integer libraries. Consequently, znot does not
flip bits that are higher than the highest set bit, which means that znot is
nilpotent rather than self dual.

Below is a list of the value of a when znot(a, a) is called repeatedly.

10101010
-1010101

101010
-10101

1010
-101

10
-1
0
0
0

Chapter 7

Number theory

In this chapter, you will learn about the number theoretic functions in
libzahl.

Contents
7.1 Odd or even . 48
7.2 Signum . 49
7.3 Greatest common divisor 50
7.4 Primality test . 51

47

48 CHAPTER 7. NUMBER THEORY

7.1 Odd or even

There are four functions available for testing the oddness and evenness of
an integer:

int zodd(z_t a);
int zeven(z_t a);
int zodd_nonzero(z_t a);
int zeven_nonzero(z_t a);

zodd returns 1 if a contains an odd value, or 0 if a contains an even number.
Conversely, zeven returns 1 if a contains an even value, or 0 if a contains an
odd number. zodd_nonzero and zeven_nonzero behave exactly like zodd
and zeven, respectively, but assumes that a contains a non-zero value, if
not undefined behaviour is invoked, possibly in the form of a segmentation
fault; they are thus sligtly faster than zodd and zeven.

It is discouraged to test the returned value against 1, we should always
test against 0, treating all non-zero value as equivalent to 1. For clarity, we
use also avoid testing that the returned value is zero, for example, rather
than !zeven(a) we write zodd(a).

7.2. SIGNUM 49

7.2 Signum

There are two functions available for testing the sign of an integer, one of
the can be used to retrieve the sign:

int zsignum(z_t a);
int zzero(z_t a);

zsignum returns −1 if a < 0, 0 if a = 0, and +1 if a > 0, that is,

sgn a =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if a < 0
0 if a = 0
+1 if a > 0

It is discouraged to compare the returned value against −1 and +1; always
compare against 0, for example:

if (zsignum(a) > 0) "positive";
if (zsignum(a) >= 0) "non-negative";
if (zsignum(a) == 0) "zero";
if (!zsignum(a)) "zero";
if (zsignum(a) <= 0) "non-positive";
if (zsignum(a) < 0) "negative";
if (zsignum(a)) "non-zero";

However, when we are doing arithmetic with the signum, we may relay on
the result never being any other value than −1, 0, and +0. For example:

zset(sgn, zsignum(a));
zadd(b, sgn);

zzero returns 0 if a = 0 or 1 if a ≠ 0. Like with zsignum, avoid testing
the returned value against 1, rather test that the returned value is not 0.
When however we are doing arithmetic with the result, we may relay on the
result never being any other value than 0 or 1.

50 CHAPTER 7. NUMBER THEORY

7.3 Greatest common divisor

There is no single agreed upon definition for the greatest common divisor of
two integer, that cover non-positive integers. In libzahl we define it as

gcd(a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−k if a < 0, b < 0
b if a = 0
a if b = 0
k otherwise

,

where k is the largest integer that divides both ∣a∣ and ∣b∣. This definion
ensures

a

gcd(a, b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 if a < 0, b < 0
< 0 if a < 0, b > 0
= 1 if b = 0, a ≠ 0
= 0 if a = 0, b ≠ 0
∈N otherwise if a ≠ 0, b ≠ 0

,

and analogously for b
gcd(a, b) . Note however, the convension gcd(0,0) = 0 is

adhered. Therefore, before dividing with gcd(a, b) you may want to check
whether gcd(a, b) = 0. gcd(a, b) is calculated with zgcd(a, b).

zgcd calculates the greatest common divisor using the Binary GCD
algorithm.

return a + b if ab = 0
return −gcd(∣a∣, ∣b∣) if a < 0 and b < 0
s←max s ∶ 2s∣a, b
u, v ← ∣a∣ ÷ 2s, ∣b∣ ÷ 2s

while u ≠ v do
v↔ u if v < u
v ← v − u
v ← v ÷ 2x, where x = maxx ∶ 2x∣v

end while
return u ⋅ 2s

maxx ∶ 2x∣z is returned by zlsb(z) (see Section 6.1 [Boundary], page 40).

7.4. PRIMALITY TEST 51

7.4 Primality test

The primality of an integer can be tested with

enum zprimality zptest(z_t w, z_t a, int t);

zptest uses Miller–Rabin primality test, with t runs of its witness loop, to
determine whether a is prime. zptest returns either

• PRIME = 2: a is prime. This is only returned for known prime numbers:
2 and 3.

• PROBABLY_PRIME = 1: a is probably a prime. The certainty will be
1 − 4−t.

• NONPRIME = 0: a is either composite, non-positive, or 1. It is certain
that a is not prime.

If and only if NONPRIME is returned, a value will be assigned to w —
unless w is NULL. This will be the witness of a’s completeness. If a ≤ 2, it is
not really composite, and the value of a is copied into w.

gcd(w,a) can be used to extract a factor of a. This factor is however
not necessarily, and unlikely so, prime, but can be composite, or even 1. In
the latter case this becomes utterly useless. Therefore using this method for
prime factorisation is a bad idea.

Below is pseudocode for the Miller–Rabin primality test with witness
return.

return NONPRIME (w ← a) if a ≤ 1
return PRIME if a ≤ 3
return NONPRIME (w ← 2) if 2∣a
r ←max r ∶ 2r ∣(a − 1)
d← (a − 1) ÷ 2r

repeat t times

k
$←Ð Za−2 ∖Z2 {Uniformly random assignment.}

x← kd mod a
continue if x = 1 or x = a − 1
repeat r times or until x = 1 or x = a − 1

x← x2 mod a
end repeat
if x = 1 return NONPRIME (w ← k)

end repeat
return PROBABLY PRIME

maxx ∶ 2x∣z is returned by zlsb(z) (see Section 6.1 [Boundary], page 40).

52 CHAPTER 7. NUMBER THEORY

Chapter 8

Random numbers

TODO

Contents
8.1 Generation . 54
8.2 Devices . 55
8.3 Distributions . 56

53

54 CHAPTER 8. RANDOM NUMBERS

8.1 Generation

TODO

8.2. DEVICES 55

8.2 Devices

TODO

56 CHAPTER 8. RANDOM NUMBERS

8.3 Distributions

TODO

Chapter 9

Not implemented

In this chapter we maintain a list of features we have chosen not to implement,
but would fit into libzahl, had we not have our priorities straight. Functions
listed herein will only be implemented if it is shown that it would be
overwhelmingly advantageous. For each feature, a sample implementation
or a mathematical expression on which you can base your implementation is
included. The sample implementations create temporary integer references
to simplify the examples. You should try to use dedicated variables; in case
of recursion, a robust program should store temporary variables on a stack,
so they can be cleaned up if something happens.

Research problems, like prime factorisation and discrete logarithms, do
not fit in the scope of bignum libraries and therefore do not fit into libzahl,
and will not be included in this chapter. Operators and functions that grow
so ridiculously fast that a tiny lookup table constructed to cover all practical
input will also not be included in this chapter, nor in libzahl.

Contents
9.1 Extended greatest common divisor 58
9.2 Least common multiple 59
9.3 Modular multiplicative inverse 60
9.4 Random prime number generation 61
9.5 Symbols . 62

9.5.1 Legendre symbol . 62
9.5.2 Jacobi symbol . 62
9.5.3 Kronecker symbol 62
9.5.4 Power residue symbol 63
9.5.5 Pochhammer k -symbol 63

57

58 CHAPTER 9. NOT IMPLEMENTED

9.6 Logarithm . 64
9.7 Roots . 65
9.8 Modular roots . 66
9.9 Combinatorial . 67

9.9.1 Factorial . 67
9.9.2 Subfactorial . 68
9.9.3 Alternating factorial 68
9.9.4 Multifactorial . 68
9.9.5 Quadruple factorial 68
9.9.6 Superfactorial . 68
9.9.7 Hyperfactorial . 68
9.9.8 Raising factorial . 68
9.9.9 Falling factorial . 68
9.9.10 Primorial . 69
9.9.11 Gamma function . 69
9.9.12 K-function . 69
9.9.13 Binomial coefficient 69
9.9.14 Catalan number . 69
9.9.15 Fuss–Catalan number 69

9.10 Fibonacci numbers 70
9.11 Lucas numbers . 72
9.12 Bit operation . 73

9.12.1 Bit scanning . 73
9.12.2 Population count 73
9.12.3 Hamming distance 74

9.13 Miscellaneous . 75
9.13.1 Character retrieval 75
9.13.2 Fit test . 75
9.13.3 Reference duplication 75
9.13.4 Variadic initialisation 75

9.1. EXTENDED GREATEST COMMON DIVISOR 59

9.1 Extended greatest common divisor

void
extgcd(z_t bézout_coeff_1, z_t bézout_coeff_2, z_t gcd

z_t quotient_1, z_t quotient_2, z_t a, z_t b)
{
#define old_r gcd
#define old_s bézout_coeff_1
#define old_t bézout_coeff_2
#define s quotient_2
#define t quotient_1

z_t r, q, qs, qt;
int odd = 0;
zinit(r), zinit(q), zinit(qs), zinit(qt);
zset(r, b), zset(old_r, a);
zseti(s, 0), zseti(old_s, 1);
zseti(t, 1), zseti(old_t, 0);
while (!zzero(r)) {

odd ^= 1;
zdivmod(q, old_r, old_r, r), zswap(old_r, r);
zmul(qs, q, s), zsub(old_s, old_s, qs);
zmul(qt, q, t), zsub(old_t, old_t, qt);
zswap(old_s, s), zswap(old_t, t);

}
odd ? abs(s, s) : abs(t, t);
zfree(r), zfree(q), zfree(qs), zfree(qt);

}

Perhaps you are asking yourself ‘‘wait a minute, doesn’t the extended
Euclidean algorithm only have three outputs if you include the greatest
common divisor, what is this shenanigans?’’ No1, it has five outputs, most
implementations just ignore two of them. If this confuses you, or you want
to know more about this, I refer you to Wikipeida.

1Well, technically yes, but it calculates two values for free in the same ways as division
calculates the remainder for free.

60 CHAPTER 9. NOT IMPLEMENTED

9.2 Least common multiple

lcm(a, b) = ∣a ⋅ b∣
gcd(a, b)

lcm(a, b) is undefined when a or b is zero, because division by zero is
undefined. Note however that gcd(a, b) is only zero when both a and b is
zero.

9.3. MODULAR MULTIPLICATIVE INVERSE 61

9.3 Modular multiplicative inverse

int
modinv(z_t inv, z_t a, z_t m)
{

z_t x, _1, _2, _3, gcd, mabs, apos;
int invertible, aneg = zsignum(a) < 0;
zinit(x), zinit(_1), zinit(_2), zinit(_3), zinit(gcd);
*mabs = *m;
zabs(mabs, mabs);
if (aneg) {

zinit(apos);
zset(apos, a);
if (zcmpmag(apos, mabs))

zmod(apos, apos, mabs);
zadd(apos, apos, mabs);

}
extgcd(inv, _1, _2, _3, gcd, apos, mabs);
if ((invertible = !zcmpi(gcd, 1))) {

if (zsignum(inv) < 0)
(zsignum(m) < 0 ? zsub : zadd)(x, x, m);

zswap(x, inv);
}
if (aneg)

zfree(apos);
zfree(x), zfree(_1), zfree(_2), zfree(_3), zfree(gcd);
return invertible;

}

62 CHAPTER 9. NOT IMPLEMENTED

9.4 Random prime number generation

TODO

9.5. SYMBOLS 63

9.5 Symbols

9.5.1 Legendre symbol

(a
p
) ≡ a

p−1
2 (Mod p), (a

p
) ∈ {−1, 0, 1}, p ∈ P, p > 2

That is, unless a
p−1
2 mod p ≤ 1, a

p−1
2 mod p = p − 1, so (a

p
) = −1.

It should be noted that (a
p
) = (a Mod p

p
) , so a compressed lookup table

can be used for small p.

9.5.2 Jacobi symbol

(a
n
) =∏

k

(a

pk
)
nk

, where n =∏
k

pnkk > 0, and pk ∈ P.

Like the Legendre symbol, the Jacobi symbol is n-periodic over a. If n,
is prime, the Jacobi symbol is the Legendre symbol, but the Jacobi symbol
is defined for all odd numbers n, where the Legendre symbol is defined only
for odd primes n.

Use the following algorithm to calculate the Jacobi symbol:

a← a mod n
r ← lsb a
a← a ⋅ 2−r

r ← { 1 if n ≡ 1,7 (Mod 8) or r ≡ 0 (Mod 2)
−1 otherwise

if a = 1 then
return r

else if gcd(a,n) ≠ 1 then
return 0

end if
(a,n) = (n, a)
start over

9.5.3 Kronecker symbol

The Kronecker symbol (a
n
) is a generalisation of the Jacobi symbol, where

n can be any integer. For positive odd n, the Kronecker symbol is equal to
the Jacobi symbol. For even n, the Kronecker symbol is 2n-periodic over a,
the Kronecker symbol is zero for all (a,n) with both a and n are even.

64 CHAPTER 9. NOT IMPLEMENTED

(a

2k ⋅ n
) = (a

n
) ⋅ (a

2
)
k

, where (a
2
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if a ≡ 1,7 (Mod 8)
−1 if a ≡ 3,5 (Mod 8)

0 otherwise

(−a
n

) = (a
n
) ⋅ (a

−1
) , where (a

−1
) = { 1 if a ≥ 0

−1 if a < 0

However, for n = 0, the symbol is defined as

(a
0
) = { 1 if a = ±1

0 otherwise.

9.5.4 Power residue symbol

TODO

9.5.5 Pochhammer k-symbol

(x)n,k =
n

∏
i=1

(x + (i − 1)k)

9.6. LOGARITHM 65

9.6 Logarithm

TODO

66 CHAPTER 9. NOT IMPLEMENTED

9.7 Roots

TODO

9.8. MODULAR ROOTS 67

9.8 Modular roots

TODO

68 CHAPTER 9. NOT IMPLEMENTED

9.9 Combinatorial

9.9.1 Factorial

n! =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∏
i=1

i if n ≥ 0

undefined otherwise

This can be implemented much more efficiently than using the naïve
method, and is a very important function for many combinatorial applica-
tions, therefore it may be implemented in the future if the demand is high
enough.

An efficient, yet not optimal, implementation of factorials that about
halves the number of required multiplications compared to the naïve method
can be derived from the observation

n! = n!! ⌊n/2⌋! 2⌊n/2⌋, n odd.

The resulting algorithm can be expressed as

void
fact(z_t r, uint64_t n)
{

z_t p, f, two;
uint64_t *ns, s = 1, i = 1;
zinit(p), zinit(f), zinit(two);
zseti(r, 1), zseti(p, 1), zseti(f, n), zseti(two, 2);
ns = alloca(zbits(f) * sizeof(*ns));
while (n > 1) {

if (n & 1) {
ns[i++] = n;
s += n >>= 1;

} else {
zmul(r, r, (zsetu(f, n), f));
n -= 1;

}
}
for (zseti(f, 1); i-- > 0; zmul(r, r, p);)

for (n = ns[i]; zcmpu(f, n); zadd(f, f, two))
zmul(p, p, f);

zlsh(r, r, s);
zfree(two), zfree(f), zfree(p);

}

9.9. COMBINATORIAL 69

9.9.2 Subfactorial

!n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n(!(n − 1)) + (−1)n if n > 0
1 if n = 0
undefined otherwise

= n!
n

∑
i=0

(−1)i

i!

9.9.3 Alternating factorial

af(n) =
n

∑
i=1

(−1)n−ii!

9.9.4 Multifactorial

n!(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if n = 0
n if 0 < n ≤ k

n((n − k)!(k)) if n > k
undefined otherwise

9.9.5 Quadruple factorial

(4n − 2)!(4)

9.9.6 Superfactorial

sf(n) =
n

∏
k=1

k1+n−k, undefined for n < 0.

9.9.7 Hyperfactorial

H(n) =
n

∏
k=1

kk, undefined for n < 0.

9.9.8 Raising factorial

x(n) = (x + n − 1)!
(x − 1)!

, undefined for n < 0.

9.9.9 Falling factorial

(x)n =
x!

(x − n)!
, undefined for n < 0.

70 CHAPTER 9. NOT IMPLEMENTED

9.9.10 Primorial

n# = ∏
{i∈P ∶ i≤n}

i

pn# = ∏
i∈Pπ(n)

i

9.9.11 Gamma function

Γ(n) = (n − 1)!, undefined for n ≤ 0.

9.9.12 K-function

K(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n−1

∏
i=1

ii if n ≥ 0

1 if n = −1
0 otherwise (result is truncated)

9.9.13 Binomial coefficient

(n
k
) = n!

k!(n − k)!
= 1

(n − k)!

n

∏
i=k+1

i = 1

k!

n

∏
i=n−k+1

i

9.9.14 Catalan number

Cn = (2n

n
)/(n + 1)

9.9.15 Fuss–Catalan number

Am(p, r) = r

mp + r
(mp + r

m
)

9.10. FIBONACCI NUMBERS 71

9.10 Fibonacci numbers

Fibonacci numbers can be computed efficiently using the following algorithm:

static void
fib_ll(z_t f, z_t g, z_t n)
{

z_t a, k;
int odd;
if (zcmpi(n, 1) <= 0) {

zseti(f, !zzero(n));
zseti(f, zzero(n));
return;

}
zinit(a), zinit(k);
zrsh(k, n, 1);
if (zodd(n)) {

odd = zodd(k);
fib_ll(a, g, k);
zadd(f, a, a);
zadd(k, f, g);
zsub(f, f, g);
zmul(f, f, k);
zseti(k, odd ? -2 : +2);
zadd(f, f, k);
zadd(g, g, g);
zadd(g, g, a);
zmul(g, g, a);

} else {
fib_ll(g, a, k);
zadd(f, a, a);
zadd(f, f, g);
zmul(f, f, g);
zsqr(a, a);
zsqr(g, g);
zadd(g, a);

}
zfree(k), zfree(a);

}

72 CHAPTER 9. NOT IMPLEMENTED

void
fib(z_t f, z_t n)
{

z_t tmp, k;
zinit(tmp), zinit(k);
zset(k, n);
fib_ll(f, tmp, k);
zfree(k), zfree(tmp);

}

This algorithm is based on the rules

F2k+1 = 4F 2
k − F 2

k−1 + 2(−1)k = (2Fk + Fk−1)(2Fk − Fk−1) + 2(−1)k

F2k = Fk ⋅ (Fk + 2Fk−1)

F2k−1 = F 2
k + F 2

k−1

Each call to fib_ll returns Fn and Fn−1 for any input n. Fk is only correctly
returned for k ≥ 0. Fn and Fn−1 is used for calculating F2n or F2n+1. The
algorithm can be sped up with a larger lookup table than one covering
just the base cases. Alternatively, a naïve calculation could be used for
sufficiently small input.

9.11. LUCAS NUMBERS 73

9.11 Lucas numbers

Lucas [lykA] numbers can be calculated by utilising fib_ll from Section 9.10
[Fibonacci numbers], page 70:

void
lucas(z_t l, z_t n)
{

z_t k;
int odd;
if (zcmp(n, 1) <= 0) {

zset(l, 1 + zzero(n));
return;

}
zinit(k);
zrsh(k, n, 1);
if (zeven(n)) {

lucas(l, k);
zsqr(l, l);
zseti(k, zodd(k) ? +2 : -2);
zadd(l, k);

} else {
odd = zodd(k);
fib_ll(l, k, k);
zadd(l, l, l);
zadd(l, l, k);
zmul(l, l, k);
zseti(k, 5);
zmul(l, l, k);
zseti(k, odd ? +4 : -4);
zadd(l, l, k);

}
zfree(k);

}

This algorithm is based on the rules

L2k = L2
k − 2(−1)k

L2k+1 = 5Fk−1 ⋅ (2Fk + Fk−1) − 4(−1)k

Alternatively, the function can be implemented trivially using the rule

Lk = Fk + 2Fk−1

74 CHAPTER 9. NOT IMPLEMENTED

9.12 Bit operation

9.12.1 Bit scanning

Scanning for the next set or unset bit can be trivially implemented using
zbtest. A more efficient, although not optimally efficient, implementation
would be

size_t
bscan(z_t a, size_t whence, int direction, int value)
{

size_t ret;
z_t t;
zinit(t);
value ? zset(t, a) : znot(t, a);
ret = direction < 0

? (ztrunc(t, t, whence + 1), zbits(t) - 1)
: (zrsh(t, t, whence), zlsb(t) + whence);

zfree(t);
return ret;

}

9.12.2 Population count

The following function can be used to compute the population count, the
number of set bits, in an integer, counting the sign bit:

size_t
popcount(z_t a)
{

size_t i, ret = zsignum(a) < 0;
for (i = 0; i < a->used; i++) {

ret += __builtin_popcountll(a->chars[i]);
}
return ret;

}

It requires a compiler extension; if it’s not available, there are other ways to
computer the population count for a word: manually bit-by-bit, or with a
fully unrolled

int s;
for (s = 1; s < 64; s <<= 1)

w = (w >> s) + w;

9.12. BIT OPERATION 75

9.12.3 Hamming distance

A simple way to compute the Hamming distance, the number of differing
bits between two numbers is with the function

size_t
hammdist(z_t a, z_t b)
{

size_t ret;
z_t t;
zinit(t);
zxor(t, a, b);
ret = popcount(t);
zfree(t);
return ret;

}

The performance of this function could be improved by comparing character
by character manually using zxor.

76 CHAPTER 9. NOT IMPLEMENTED

9.13 Miscellaneous

9.13.1 Character retrieval

uint64_t
getu(z_t a)
{

return zzero(a) ? 0 : a->chars[0];
}

9.13.2 Fit test

Some libraries have functions for testing whether a big integer is small
enough to fit into an intrinsic type. Since libzahl does not provide conversion
to intrinsic types this is irrelevant. But additionally, it can be implemented
with a single one-line macro that does not have any side-effects.

#define fits_in(a, type) (zbits(a) <= 8 * sizeof(type))
/* Just be sure the type is integral. */

9.13.3 Reference duplication

This could be useful for creating duplicates with modified sign, but only if
neither r nor a will be modified whilst both are in use. Because it is unsafe,
fairly simple to create an implementation with acceptable performance —
*r = *a, — and probably seldom useful, this has not been implemented.

void
refdup(z_t r, z_t a)
{

/* Almost fully optimised, but perfectly portable *r = *a; */
r->sign = a->sign;
r->used = a->used;
r->alloced = a->alloced;
r->chars = a->chars;

}

9.13.4 Variadic initialisation

Most bignum libraries have variadic functions for initialisation and unini-
tialisation. This is not available in libzahl, because it is not useful enough
and has performance overhead. And what’s next, support va_list, variadic
addition, variadic multiplication, power towers, set manipulation? Anyone

9.13. MISCELLANEOUS 77

can implement variadic wrapper for zinit and zfree if they really need it.
But if you want to avoid the overhead, you can use something like this:

/* Call like this: MANY(zinit, (a), (b), (c)) */
#define MANY(f, ...) (_MANY1(f, __VA_ARGS__,,,,,,,,,))

#define _MANY1(f, a, ...) (void)f a, _MANY2(f, __VA_ARGS__)
#define _MANY2(f, a, ...) (void)f a, _MANY3(f, __VA_ARGS__)
#define _MANY3(f, a, ...) (void)f a, _MANY4(f, __VA_ARGS__)
#define _MANY4(f, a, ...) (void)f a, _MANY5(f, __VA_ARGS__)
#define _MANY5(f, a, ...) (void)f a, _MANY6(f, __VA_ARGS__)
#define _MANY6(f, a, ...) (void)f a, _MANY7(f, __VA_ARGS__)
#define _MANY7(f, a, ...) (void)f a, _MANY8(f, __VA_ARGS__)
#define _MANY8(f, a, ...) (void)f a, _MANY9(f, __VA_ARGS__)
#define _MANY9(f, a, ...) (void)f a

78 CHAPTER 9. NOT IMPLEMENTED

Chapter 10

Exercises

1. [�02] Saturated subtraction

Implement the function
void monus(z_t r, z_t a, z_t b);

which calculates r = a � b = max{0, a − b}.

2. [�10] Modular powers of 2

What is the advantage of using zmodpow over zbset or zlsh in combi-
nation with zmod?

3. [M15] Convergence of the Lucas Number ratios

Find an approximation for lim
n→∞

Ln+1

Ln
, where Ln is the nth Lucas

Number (see Section 9.11 [Lucas numbers], page 72).

Ln
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 if n = 0
1 if n = 1
Ln−1 +Ln+1 otherwise

4. [MP12] Factorisation of factorials

Implement the function
void factor_fact(z_t n);

which prints the prime factorisation of n! (the nth factorial). The
function shall be efficient for all n where all primes p ≤ n can be found
efficiently. You can assume that n ≥ 2. You should not evaluate n!.

5. [M20] Reverse factorisation of factorials

You should already have solved ‘‘Factorisation of factorials’’ before you solve
this problem.

Implement the function

79

80 CHAPTER 10. EXERCISES

void unfactor_fact(z_t x, z_t *P,
unsigned long long int *K, size_t n);

which given the factorsation of x! determines x. The factorisation of

x! is
n

∏
i=1

PKi
i , where Pi is P[i - 1] and Ki is K[i - 1].

6. [�MP17] Factorials inverted

Implement the function

void unfact(z_t x, z_t n);

which given a factorial number n, i.e. on the form x! = 1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ x,
calculates x = n!−1. You can assume that n is a perfect factorial number
and that x ≥ 1. Extra credit if you can detect when the input, n, is
not a factorial number. Such function would of course return an int 1
if the input is a factorial and 0 otherwise, or alternatively 0 on success
and −1 with errno set to EDOM if the input is not a factorial.

7. [05] Fast primality test

(x + y)p ≡ xp + yp (Mod p) for all primes p and for a few composites
p, which are know as pseudoprimes. Use this to implement a fast
primality tester.

8. [10] Fermat primality test

ap−1 ≡ 1 (Mod p) ∀ 1 < a < p for all primes p and for a few composites
p, which are know as pseudoprimes1. Use this to implement a heuristic
primality tester. Try to mimic zptest as much as possible. GNU MP
uses a = 210, but you don’t have to. (a is called a base.)

9. [11] Lucas–Lehmer primality test

The Lucas–Lehmer primality test can be used to determine whether a
Mersenne numbers Mn = 2n − 1 is a prime (a Mersenne prime). Mn is
a prime if and only if sn−1 ≡ 0 (Mod Mn), where

si = { 4 if i = 0
s2i−1 − 2 otherwise.

The Lucas–Lehmer primality test requires that n ≥ 3, however M2 =
22−1 = 3 is a prime. Implement a version of the Lucas–Lehmer primality
test that takes n as the input. For some more fun, when you are done,
you can implement a version that takes Mn as the input.

For improved performance, instead of using zmod, you can use the recur-
sive function k mod (2n − 1) = ((k mod 2n) + ⌊k ÷ 2n⌋) mod (2n − 1),

1If p is composite but passes the test for all a, p is a Carmichael number.

81

where k mod 2n is efficiently calculated using zand(k, 2n − 1). (This
optimisation is not part of the difficulty rating of this problem.)

10. [20] Fast primality test with bounded perfection

Implement a primality test that is both very fast and never returns
PROBABLY_PRIME for input less than or equal to a preselected number.

11. [30] Powers of the golden ratio

Implement function that returns ϕn rounded to the nearest integer,
where n is the input and ϕ is the golden ratio.

12. [�05] zlshu and zrshu

Why does libzahl have

void zlsh(z_t, z_t, size_t);
void zrsh(z_t, z_t, size_t);

rather than

void zlsh(z_t, z_t, z_t);
void zrsh(z_t, z_t, z_t);
void zlshu(z_t, z_t, size_t);
void zrshu(z_t, z_t, size_t);

13. [�M15] Modular left-shift

Implement a function that calculates 2a mod b, using zmod and only
cheap functions. You can assume a ≥ 0, b ≥ 1. You can also assume
that all parameters are unique pointers.

14. [�08] Modular left-shift, extended

You should already have solved ‘‘Modular left-shift’’ before you solve this
problem.

Extend the function you wrote in ‘‘Modular left-shift’’ to accept nega-
tive b and non-unique pointers.

15. [13] The totient

The totient of n is the number of integer a, 0 < a < n that are relatively
prime to n. Implement Euler’s totient function ϕ(n) which calculates
the totient of n. Its formula is

ϕ(n) = ∣n∣ ∏
p∈P∶p∣n

(1 − 1

p
) .

Note that ϕ(−n) = ϕ(n), ϕ(0) = 0, and ϕ(1) = 1.

82 CHAPTER 10. EXERCISES

16. [M13] The totient from factorisation

Implement the function

void totient_fact(z_t t, z_t *P,
unsigned long long int *K, size_t n);

which calculates the totient t = ϕ(n), where n =
n

∏
i=1

PKi
i > 0, and

Pi = P[i - 1] ∈ P, Ki = K[i - 1] ≥ 1. All values P are mutually
unique. P and K make up the prime factorisation of n.

You can use the following rules:
ϕ(1) = 1
ϕ(p) = p − 1 if p ∈ P
ϕ(nm) = ϕ(n)ϕ(m) if gcd(n,m) = 1
naϕ(n) = ϕ(na+1)

17. [HMP32] Modular tetration

Implement the function

void modtetra(z_t r, z_t b, unsigned long n, z_t m);

which calculates r = nb mod m, where 0b = 1, 1b = b, 2b = bb, 3b = bb
b
,

4b = bb
bb

, and so on. You can assume b > 0 and m > 0. You can also
assume r, b, and m are mutually unique pointers.

18. [13] Modular generalised power towers

This problem requires a working solution for ‘‘Modular tetration’’.

Modify your solution for ‘‘Modular tetration’’ to evaluate any expres-
sion on the forms ab, ab

c
, ab

cd

, . . . mod m.

Chapter 11

Solutions

1. Saturated subtraction

void monus(z_t r, z_t a, z_t b)
{

zsub(r, a, b);
if (zsignum(r) < 0)

zsetu(r, 0);
}

2. Modular powers of 2

zbset and zbit requires Θ(n) memory to calculate 2n. zmodpow only
requires O(min{n, logm}) memory to calculate 2n mod m. Θ(n) mem-
ory complexity becomes problematic for very large n.

3. Convergence of the Lucas Number ratios

It would be a mistake to use bignum, and bigint in particular, to solve
this problem. Good old mathematics is a much better solution.

lim
n→∞

Ln+1

Ln
= lim

n→∞

Ln

Ln−1
= lim

n→∞

Ln−1

Ln−2

Ln

Ln−1
= Ln−1

Ln−2

Ln−1 +Ln−2

Ln−1
= Ln−1

Ln−2

1 + Ln−2

Ln−1
= Ln−1

Ln−2

83

84 CHAPTER 11. SOLUTIONS

1 + ϕ = 1

ϕ

So the ratio tends toward the golden ratio.

4. Factorisation of factorials

Base your implementation on

n! =
n

∏
p ∈ P

pkp , where kp =
⌊logp n⌋

∑
a=1

⌊np−a⌋.

There is no need to calculate ⌊logp n⌋, you will see when pa > n.

5. Reverse factorisation of factorials

x = max
p ∈ P

p ⋅ f(p, kp), where kp is the power of p in the factorisation of

x!. f(p, k) is defined as:

k′ ← 0
while k > 0 do
a← 0
while pa ≤ k do
k ← k − pa

a← a + 1
end while
k′ ← k′ + pa−1

end while
return k′

6. Factorials inverted

Use zlsb to get the power of 2 in the prime factorisation of n, that
is, the number of times n is divisible by 2. If we write n on the form
1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ x, every 2nd factor is divisible by 2, every 4th factor is
divisible by 22, and so on. From calling zlsb we know how many times,
n is divisible by 2, but know how many of the factors are divisible by
2, but this can be calculated with the following algorithm, where k is
the number times n is divisible by 2:

85

k′ ← 0
while k > 0 do
a← 0
while 2a ≤ k do
k ← k − 2a

a← a + 1
end while
k′ ← k′ + 2a−1

end while
return k′

Note that 2a is efficiently calculated with, zlsh, but it is more efficient
to use zbset.

Now that we know k′, the number of factors ni 1 ⋅ . . . ⋅ x that are
divisible by 2, we have two choices for x: k′ and k′+1. To check which,
we calculate (k′ −1)!! (the semifactoral, i.e. 1 ⋅3 ⋅5 ⋅ . . . ⋅ (k′ −1)) naïvely
and shift the result k steps to the left. This gives us k′!. If x! ≠ k′!,
then x = k′ + 1 unless n is not factorial number. Of course, if x! = k′!,
then x = k′.

7. Fast primality test

If we select x = y = 1 we get 2p ≡ 2 (Mod p). This gives us

enum zprimality
ptest_fast(z_t p)
{

z_t a;
int c = zcmpu(p, 2);
if (c <= 0)

return c ? NONPRIME : PRIME;
zinit(a);
zsetu(a, 1);
zlsh(a, a, p);
zmod(a, a, p);
c = zcmpu(a, 2);
zfree(a);
return c ? NONPRIME : PROBABLY_PRIME;

}

8. Fermat primality test

Below is a simple implementation. It can be improved by just testing
against a fix base, such as a = 210, it t = 0. It could also do an
exhaustive test (all a such that 1 < a < p) if t < 0.

86 CHAPTER 11. SOLUTIONS

enum zprimality
ptest_fermat(z_t witness, z_t p, int t)
{

enum zprimality rc = PROBABLY_PRIME;
z_t a, p1, p3, temp;
int c;

if ((c = zcmpu(p, 2)) <= 0) {
if (!c)

return PRIME;
if (witness && witness != p)

zset(witness, p);
return NONPRIME;

}

zinit(a), zinit(p1), zinit(p3), zinit(temp);
zsetu(temp, 3), zsub(p3, p, temp);
zsetu(temp, 1), zsub(p1, p, temp);

zsetu(temp, 2);
while (t--) {

zrand(a, DEFAULT_RANDOM, UNIFORM, p3);
zadd(a, a, temp);
zmodpow(a, a, p1, p);
if (zcmpu(a, 1)) {

if (witness)
zswap(witness, a);

rc = NONPRIME;
break;

}
}

zfree(temp), zfree(p3), zfree(p1), zfree(a);
return rc;

}

9. Lucas–Lehmer primality test

enum zprimality
ptest_llt(z_t n)
{

z_t s, M;
int c;

87

size_t p;

if ((c = zcmpu(n, 2)) <= 0)
return c ? NONPRIME : PRIME;

if (n->used > 1) {
/* An optimised implementation would not need this */
errno = ENOMEM;
return (enum zprimality)(-1);

}

zinit(s), zinit(M), zinit(2);

p = (size_t)(n->chars[0]);
zsetu(s, 1), zsetu(M, 0);
zbset(M, M, p, 1), zsub(M, M, s);
zsetu(s, 4);
zsetu(two, 2);

p -= 2;
while (p--) {

zsqr(s, s);
zsub(s, s, two);
zmod(s, s, M);

}
c = zzero(s);

zfree(two), zfree(M), zfree(s);
return c ? PRIME : NONPRIME;

}

Mn is composite if n is composite, therefore, if you do not expect
prime-only values on n, the performance can be improved by using
some other primality test (or this same test if n is a Mersenne number)
to first check that n is prime.

10. Fast primality test with bounded perfection

First we select a fast primality test. We can use 2p ≡ 2 (Mod p) ∀ p ∈ P,
as describe in the solution for the problem Fast primality test.

Next, we use this to generate a large list of primes and pseudoprimes.
Use a perfect primality test, such as a naïve test or the AKS primality

88 CHAPTER 11. SOLUTIONS

test, to filter out all primes and retain only the pseudoprimes. This is
not in runtime so it does not matter that this is slow, but to speed
it up, we can use a probabilistic test such the Miller–Rabin primality
test (zptest) before we use the perfect test.

Now that we have a quite large — but not humongous — list of
pseudoprimes, we can incorporate it into our fast primality test. For
any input that passes the test, and is less or equal to the largest
pseudoprime we found, binary search our list of pseudoprime for the
input.

For input, larger than our limit, that passes the test, we can run it
through zptest to reduce the number of false positives.

As an alternative solution, instead of comparing against known pseu-
doprimes. Find a minimal set of primes that includes divisors for all
known pseudoprimes, and do trail division with these primes when a
number passes the test. No pseudoprime need to have more than one
divisor included in the set, so this set cannot be larger than the set of
pseudoprimes.

11. Powers of the golden ratio

This was an information gathering exercise. For n ≥ 2, Ln = [ϕn],
where Ln is the nth Lucas number.

Ln
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 if n = 0
1 if n = 1
Ln−1 +Ln+1 otherwise

but for efficiency and briefness, we will use lucas from Section 9.11
[Lucas numbers], page 72.

void
golden_pow(z_t r, z_t n)
{

if (zsignum(n) <= 0)
zsetu(r, zcmpi(n, -1) >= 0);

else if (!zcmpu(n, 1))
zsetu(r, 2);

else
lucas(r, n);

}

12. zlshu and zrshu

You are in big trouble, memorywise, of you need to evaluate 22
64
.

13. Modular left-shift

89

void
modlsh(z_t r, z_t a, z_t b)
{

z_t t, at;
size_t s = zbits(b);

zinit(t), zinit(at);
zset(at, a);
zsetu(r, 1);
zsetu(t, s);

while (zcmp(at, t) > 0) {
zsub(at, at, t);
zlsh(r, r, t);
zmod(r, r, b);
if (zzero(r))

break;
}
if (!zzero(a) && !zzero(b)) {

zlsh(r, r, a);
zmod(r, r, b);

}

zfree(at), zfree(t);
}

It is worth noting that this function is not necessarily faster than
zmodpow.

14. Modular left-shift, extended

The sign of b shall not effect the result. Use zabs to create a copy of
b with its absolute value.

15. The totient

ϕ(n) = n ∏
p∈P∶p∣n

(1 − 1

p
) = n ∏

p∈P∶p∣n
(p − 1

p
)

So, if we set a = n and b = 1, then we iterate of all integers p, 2 ≤ p ≤ n.
For which p that is prime, we set a ← a ⋅ (p − 1) and b ← b ⋅ p. After
the iteration, b∣a, and ϕ(n) = a

b . However, if n < 0, then, ϕ(n) = ϕ∣n∣.

16. The totient from factorisation

void

90 CHAPTER 11. SOLUTIONS

totient_fact(z_t t, z_t *P,
unsigned long long *K, size_t n)

{
z_t a, one;
zinit(a), zinit(one);
zseti(t, 1);
zseti(one, 1);
while (n--) {

zpowu(a, P[n], K[n] - 1);
zmul(t, t, a);
zsub(a, P[n], one);
zmul(t, t, a);

}
zfree(a), zfree(one);

}

17. Modular tetration

Let totient be Euler’s totient function. It is described in the problem
‘‘The totient’’.

We need two help function: tetra(r, b, n) which calculated r = nb,
and cmp_tetra(a, b, n) which is compares a to nb.

void
tetra(z_t r, z_t b, unsigned long n)
{

zsetu(r, 1);
while (n--)

zpow(r, b, r);
}

int
cmp_tetra(z_t a, z_t b, unsigned long n)
{

z_t B;
int cmp;

if (!n || !zcmpu(b, 1))
return zcmpu(a, 1);

if (n == 1)
return zcmp(a, b);

if (zcmp(a, b) >= 0)
return +1;

91

zinit(B);
zsetu(B, 1);
while (n) {

zpow(B, b, B);
if (zcmp(a, B) < 0) {

zfree(B);
return -1;

}
}
cmp = zcmp(a, B);
zfree(B);
return cmp;

}

tetra can generate unmaintainably huge numbers. Will however only
call tetra when this is not the case.

void
modtetra(z_t r, z_t b, unsigned long n, z_t m)
{

z_t t, temp;

if (n <= 1) {
if (!n)

zsetu(r, zcmpu(m, 1));
else

zmod(r, b, m);
return;

}

zmod(r, b, m);
if (zcmpu(r, 1) <= 0)

return;

zinit(t);
zinit(temp);

t = totient(m);
zgcd(temp, b, m);

if (!zcmpu(temp, 1)) {
modtetra(temp, b, n - 1, t);

92 CHAPTER 11. SOLUTIONS

zmodpow(r, r, temp, m);
} else if (cmp_tetra(t, b, n - 1) > 0) {

temp = tetra(b, n - 1);
zpowmod(r, r, temp, m);

} else {
modtetra(temp, b, n - 1, t);
zmodpow(temp, r, temp, m);
zmodpow(r, r, t, m);
zmodmul(r, r, temp, m);

}

zfree(temp);
zfree(t);

}

18. Modular generalised power towers

Instead of the signature

void modtetra(z_t r, z_t b, unsigned long n, z_t m);

you want to use the signature

void modtower_(z_t r, z_t *a, size_t n, z_t m);

Instead of using, b (in modtetra), use *a. At every recursion, instead
of passing on a, pass on a + 1.

The function tetra is modified into

void tower(z_t r, z_t *a, size_t n)
{

zsetu(r, 1);
while (n--);

zpow(r, a[n], r);
}

cmp_tetra is changed analogously.

To avoid problems in the evaluation, define

void modtower(z_t r, z_t *a, size_t n, z_t m);

which cuts the power short at the first element of of a that equals 1. For
example, if a = {2,3,4,5,1,2,3}, and n = 7 (n = ∣a∣), then modtower,
sets n = 4, and effectively a = {2,3,4,5}. After this modtower calls
modtower_.

93

	What is libzahl?
	The name and the what
	Why does it exist?
	How is it different?
	Limitations

	libzahl's design
	Memory pool
	Error handling
	Integer structure
	Parameters

	Get started
	Initialisation
	Exceptional conditions
	Create an integer

	Miscellaneous
	Assignment
	String output
	Comparison
	Marshalling

	Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Exponentiation
	Sign manipulation

	Bit operations
	Boundary
	Shift
	Truncation
	Split
	Bit manipulation
	Bit test
	Connectives

	Number theory
	Odd or even
	Signum
	Greatest common divisor
	Primality test

	Random numbers
	Generation
	Devices
	Distributions

	Not implemented
	Extended greatest common divisor
	Least common multiple
	Modular multiplicative inverse
	Random prime number generation
	Symbols
	Legendre symbol
	Jacobi symbol
	Kronecker symbol
	Power residue symbol
	Pochhammer k-symbol

	Logarithm
	Roots
	Modular roots
	Combinatorial
	Factorial
	Subfactorial
	Alternating factorial
	Multifactorial
	Quadruple factorial
	Superfactorial
	Hyperfactorial
	Raising factorial
	Falling factorial
	Primorial
	Gamma function
	K-function
	Binomial coefficient
	Catalan number
	Fuss–Catalan number

	Fibonacci numbers
	Lucas numbers
	Bit operation
	Bit scanning
	Population count
	Hamming distance

	Miscellaneous
	Character retrieval
	Fit test
	Reference duplication
	Variadic initialisation

	Exercises
	Solutions
	Index

